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Recently, Ojikutu et al.[I] described a numerical method for determining the order A. of
Williams-type stress singularities arising within the framework of classical lamination
theory at the apex of a composite laminated wedge. After rewriting constitutive and
equilibrium equations in polar coordinates, substitution of a displacement field exhibiting
an rA behaviour yields a set of ordinary differential equations with variable coefficients
depending upon the polar coordinate O. The authors assume that a closed form solution
does not exist and therefore they use a finite difference scheme based on a division of the
apex angle into n + 1 parts. After appropriate treatment of boundary conditions (attention
was restricted to the case of a simply supported wedge, the support being free to move in
the plane of the plate) this scheme leads to a homogeneous system of n + 2 algebraic
equations for the case of bending in symmetrical laminates and 3n + 6 equations for the
case of coupled extension and bending in antisymmetrical laminates. The order A. of the
singularity is then found as a root of the determinant of the algebraic system, taking n = 24
in the former case and n = 18 in the latter.

It is the purpose of this note to show that the cumbersome derivation of ordinary
differential equations, boundary conditions and finite difference approximations may be
avoided altogether because the partial differential equations of classical lamination theory,
written in Cartesian coordinates, admit a general integral in closed form, similar to
Lekhnitskii's approach[3] with complex-variable stress functions. This approach has been
extensively used by Wang and co-workers[4-6] in stress singularity problems.

Constitutive and equilibrium equations of classical lamination theory are given by
Jones[2] as

(1)

(2)

where {u} is the in-plane displacement vector, w is the deflection, {N} and {M} are stress
resultants; [A], [D] and [B] are respectively the extensional, bending and coupling.stiffness
matrices and [L I ] and {L2 } are partial differential operators

{u} = {ux Uy}T (3)

{N} = {N"" Nyy N"y}T (4)

{M} = {M"" Myy MJlyr (5)
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50 with similar index numbering for [B] and [D]. Substitution of eqn (1) in eqn (2) yields

51

52 where

53

(9)

(10)

S4 The general integral of the partial differential equations (9) may be written in terms
55 of arbitrary functions cP.(z.) with complex argument z. = x + J.LkY as

56

57

(11 )

(12)

S8 where (Uk' Wk) is a non-trivial solution of the homogeneous algebraic system

59 (13)

60 and J.Lk (k = 1, ... ,4) are the complex roots with positive imaginary part of the determinant
61 of [p(J.L)]' This matrix is obtained from eqns (6), (7) and (10) by formally replacing (olox, oloY)
62 by (1,J.L)
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(14)

(15)

(16)

66 Its determinant is an eighth degree polynomial in J.L and in view of the positive definite
67 stiffness matrix the roots J.Lk must appear as four pairs of complex conjugates. If extension
68 and bending are uncoupled, simplifications are obvious.
69 Williams-type stress singularities may now be obtained by taking

70 (17)

71 where b is the order of the singularity (notation used by Wang and co-workers[4-6],
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whereas Ojikutu et at. denote the order by .A. = J + 1). Since J is in general a complex
number, one should also consider its complex conjugate 5, but in view of the real parts
taken in eqns (11) and (12), this is equivalent to the extension of the summation over the
four remaining roots 1lk+4 = fia. The full expressions for displacements and stress resultants
thus read

(18)

(19)

(20)

where

The boundary conditions considered by Ojikutu et at. are

Nxe = -Nxx sin8 + Nxycos8 = 0

N16 = - Nxy sin 8 + N" cos 8 = 0

Mee = Mxx sin2 8 - 2Mxysin8cos8 + M"cos2 8 = 0

w=o

(21 )

(22)

on 0 = ±a/2, where IX is the apex angle of the wedge. It may be noted that the range of
the polar coordinate 8 has been changed to [ - a12, + a/2] with IX < 27t in order to avoid
multi-valued displacements arising from complex exponentiation in eqns (18) and (19).
Substituting eqns (19) and (20) in eqn (22) after setting

(23)

and taking advantage of the fact that the eigenvectors of the stress resultants satisfy

one obtains a homogeneous system of eight complex algebraic equations

(24)

8

L (cos 8 + Ila sin 8)6+ 1

a=1

Nxya
N"a

M cos () + Mxd sin ()
"a Ila

(cos 8 + Ila sin 8)»-t

=0 (25)

where 8 = - a12, the unknowns being the arbitrary multiplicative complex constants of
the eight eigenvectors (Va, »-t. N1 • M 1). The order {) is then found as a root of the
determinant of this system.
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